Главная
Обозначения
Шутки
Форум
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
  План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной Правила Прайс-лист Регистрация

Деление многочлена на линейный двучлен

 

 Линейный двучлен. Теорема Безу.

 

Линейный двучлен есть многочлен первой степени:   a x + b. Если разделить многочлен, содержащий букву  x , на линейный двучлен  x b, где  b – некоторое число (положительное или отрицательное), то остаток будет только многочленом нулевой степени (см. параграф "Деление многочленов"), т.е. некоторым числом  N , которое можно определить, не находя частного. Более точно, это число равно значению многочлена, получаемому при  x = b. Это свойство вытекает из теоремы Безу:   многочлен  a0 xm + a1 xm-1 + a2 xm-2 + …+ am  делится на двучлен   xb   с остатком  N = a0 bm + a1 bm-1 + a2 bm-2 + …+ am .

 

Д о к а з а т е л ь с т в о .  В соответствии с определением операции деления многочленов имеем:

 

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = ( x – b ) Q + N ,

         

где Q – некоторый многочлен, N – некоторое число.

Подставим  x = b , тогда слагаемое ( xb ) Q  обращается в нуль, и мы получаем:

 

a0 bm + a1 bm-1 + a2 bm-2 + …+ am = N .

 

З а м е ч а н и е .  При  N = 0  число b является корнем уравнения: 

 

a0 xm + a1 xm-1 + a2 xm-2 + …+ am = 0 .

Теорема доказана.

Назад



| | Главная | Об авторах | Ссылки | Связь |

Copyright © 2004 - 2007 Др. Юрий Беренгард.  All rights reserved.