Главная
Обозначения
Шутки
Форум
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
  План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной Правила Прайс-лист Регистрация

Гипербола

 

Гипербола. Фокусы. Уравнение гиперболы. Фокусное расстояние.

Действительная и мнимая оси гиперболы. Эксцентриситет.

Асимптоты гиперболы. Уравнение касательной к гиперболе.

Условие касания прямой и гиперболы.

 

Гиперболой ( рис.1 ) называется геометрическое место точек, модуль разности расстояний от которых до двух заданных точек  F1 и F2 , называемых  фокусами гиперболы, есть величина постоянная.

Уравнение гиперболы ( рис.1 ) :

Здесь начало координат является центром симметрии гиперболы, а оси координат – её осями симметрии.

Отрезок  F1F2 = 2 с ,  где , называется фокусным расстоянием. Отрезок  AB = 2 a называется  действительной осью гиперболы, а отрезок  CD = 2 b мнимой осью гиперболы. Число  e = c / ae > 1 называется эксцентриситетом гиперболы. Прямые   y = ± ( b / a ) x  называются асимптотами гиперболы.

 

Пусть  Р ( х1 ,  у 1 ) – точка гиперболы, тогда  уравнение касательной к гиперболе в данной точке имеет вид:

Условие касания прямой  y = m x + k  и гиперболы  х 2 / a 2  –  у  2 / b = 1 :

 

 

k 2  = m 2 a 2 b 2 .

 

Назад



| | Главная | Об авторах | Ссылки | Связь |

Copyright © 2004 - 2007 Др. Юрий Беренгард.  All rights reserved.