Главная
Обозначения
Шутки
Форум
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
  План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной Правила Прайс-лист Регистрация

Парабола

 

Парабола. Фокус.  Директриса. Уравнение параболы.

Уравнение касательной к параболе.

Условие касания прямой и параболы.

 

Параболой ( рис.1 ) называется геометрическое место точек, равноудалённых  от заданной точки  F , называемой фокусом параболы, и данной прямой, не проходящей через эту точку и называемой директрисой параболы.

Уравнение параболы ( рис.1 ) :

 

y 2 = 2 p x .

 

Здесь ось ОХ  является осью симметрии параболы.

 

Пусть  Р ( х1 ,  у 1 ) – точка параболы, тогда  уравнение касательной к параболе  в данной точке имеет вид:

 

у 1 y  = p ( x +  х1 ) .          

 

Условие касания прямой  y = m x + k  и параболы  y 2 = 2 p x :

 

2 m k   = p .

 

Назад



| | Главная | Об авторах | Ссылки | Связь |

Copyright © 2004 - 2007 Др. Юрий Беренгард.  All rights reserved.