Главная
Обозначения
Шутки
Форум
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
  План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной Правила Прайс-лист Регистрация

Наибольший общий делитель

 Общий делитель. Наибольший общий делитель.

Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа  36,  60,  42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД).

Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо:

1)  представить каждое число как произведение его простых множителей, например:

360 = 2 · 2 · 2 · 3 · 3 · 5 ,

2)  записать степени всех простых множителей:

360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51,

3)  выписать все общие делители (множители) этих чисел;

4)  выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;

5)  перемножить эти степени.

 

П р и м е р .  Найти НОД чисел: 168, 180 и 3024.

Р е ш е н и е .   168 = 2 · 2 · 2 · 3 · 7 = 23  · 31  · 71 ,

                          180 = 2 · 2 · 3 · 3 · 5 = 22  · 32  · 51 ,

                          3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24  · 33  · 71 .

                          Выпишем наименьшие степени общих делителей 2 и 3

                          и перемножим их:

НОД = 22  · 31  = 12 .

 

Назад



| | Главная | Об авторах | Ссылки | Связь |

Copyright © 2004 - 2007 Др. Юрий Беренгард.  All rights reserved.