Главная
Обозначения
Шутки
Форум
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
  План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной Правила Прайс-лист Регистрация

Обратная функция

 

 

Если поменять ролями аргумент и функцию, то  x  станет функцией от  y. В этом случае говорят о новой функции, называемой обратной функцией. Предположим, мы имеем функцию:

 

v = u 2 ,

 

где  u - аргумент, a  v - функция. Если поменять их ролями, то мы получим  u  как функцию  v :

Если обозначить аргумент в обеих функциях через  x , а функцию – через   y,  то мы имеем две функции:

каждая из которых является обратной по отношению к другой.

 

П р и м е р ы .  Эти функции являются обратными друг к другу:

                        

1)  sin x  и  Arcsin x,  так как, если  y = sin x,  то   x = Arcsin y;

2)  cos x  и  Arccos x,  так как, если  y = cos x,  то  x = Arccos y;

3)  tan x  и  Arctan x,  так как, если  y = tan x,  то   x = Arctan y;

4)  ex  и  ln x,  так как, если  y = ex ,  то  x = ln y.

 

Назад



| | Главная | Об авторах | Ссылки | Связь |

Copyright © 2004 - 2007 Др. Юрий Беренгард.  All rights reserved.