Главная
Обозначения
Шутки
Отзывы
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
   План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной
  Очерки об ученых
 


АБЕЛЬ



Нильс Хенрик Абель (1802 – 1829) – норвежский математик.
Родился в семье пастора. Детство Абеля было омрачено слабым здоровьем, а также пьянством и постоянными раздорами его родителей. В школе, благодаря учителю Берту Михаэлю Хольмбоэ, увлёкся математикой. В своём служебном отчёте 1819 года Хольмбоэ так писал о своём 17-летнем ученике: «С превосходнейшим гением он сочетает ненасытный интерес и тяготение к математике, поэтому, если он будет жить, он, вероятно, станет великим математиком».
В 1820 году умирает отец Абеля. Семья (шестеро детей) на грани нищеты. У старшего брата, Ханса-Матиаса, обнаружилось душевное расстройство. Ответственность за семью теперь на плечах 18-летнего Нильса Хенрика.
В 1821 году Абель поступил в университет Христиании (ныне Осло), где преподаватели, ознакомившись с его ранними работами, решили установить ему стипендию из личных средств, «дабы сохранить для науки это редкое дарование». Чтобы облегчить жизнь матери, Нильс Хенрик взял одного из братьев к себе и стал подрабатывать репетиторством.
1822: Абель получает степень «кандидата философии». Зимой 1822–1823 годов он представил университету первую значительную научную работу, посвящённую интегрируемости дифференциальных уравнений. Рукопись не была опубликована и впоследствии затерялась, но за неё Абелю наконец назначена государственная стипендия.
1823: Абель закончил блестящее исследование древней проблемы: доказал невозможность решить в общем виде (в радикалах) уравнение 5-й степени.
1824: университет разрешил Абелю оплачиваемую поездку за границу для продолжения образования. Сначала Абель поехал в Берлин, где жил с сентября 1825 года по февраль 1826 года. Там он познакомился с Августом Крелле, который устроил Нильса сотрудником «Журнала чистой и прикладной математики». Работы Абеля в этот период касались в основном теории эллиптических функций, которую он значительно продвинул одновременно с Карлом Густавом Якоби. Соревнование в течение нескольких лет этих двух выдающихся математиков принесло существенную пользу науке. Публикует также расширенный вариант своей первой работы об уравнениях: любые уравнения степени выше 4-й, вообще говоря, неразрешимы в радикалах. Причём он привёл конкретные примеры неразрешимых уравнений. Впоследствии на эту работу опирался Галуа.
В июле 1826 года Абель переехал в Париж, где оставался до конца года. Знакомится с Лежандром и Коши. Пытается опубликовать знаменитый мемуар об абелевых функциях. Труд этот сначала затерялся, потом его отыскали и – уже посмертно – отметили Большой премией Парижской Академии.
В начале 1827 года деньги заканчиваются, Абелю приходится ограничивать себя в еде. Он возвращается в Берлин, потом в Христианию. Бедствует, подрабатывая частными уроками. После письма видных французских математиков норвежскому королю получает место временного преподавателя в университете и инженерной школе. Бо'льшая часть жалованья уходит на выплату накопившихся долгов.
1828: Абель избран членом Королевского научного общества Норвегии. Продолжает активно развивать теорию эллиптических функций. Ждёт обещанного приглашения на работу в Берлин. Но в 1829 году Абель умирает от туберкулёза. Приглашение опоздало. Учитель Абеля Хольмбоэ посмертно издал собрание его сочинений (1839).

Памятник Абелю в Ерстаде

Научные достижения Абеля поистине потрясают, особенно, если учесть, что он прожил всего 27 лет!
В алгебре Абель нашёл необходимое условие для того, чтобы корень уравнения выражался «в радикалах» через коэффициенты этого уравнения. Достаточное условие вскоре открыл Галуа, чьи достижения опирались на труды Абеля. Абель привёл конкретные примеры уравнения 5-й степени, корни крторых нельзя выразить в радикалах, и тем самым в значительной степени закрыл древнюю проблему.
В теории рядов имя Абеля носят несколько важных теорем. Абель тщательно исследовал тему сходимости рядов, причём на высшем уровне строгости. Его критерии строгости были более жёсткими, чем даже у Коши. Он, например, доказывал, что сумма степенного ряда внутри круга сходимости непрерывна, в то время как Гаусс и Коши считали этот факт самоочевидным. Коши, правда, опубликовал (1821) доказательство даже более общей теоремы: «Сумма любого сходящегося ряда непрерывных функций непрерывна», однако Абель в 1826 году привёл контрпример, показывающий, что эта теорема неверна. Позднее Вейерштрасс исправил формулировку теоремы, введя понятие равномерной сходимости. В доказательствах самого Абеля чаще всего невозможно найти неточности и современному математику.
В теории специальных, особенно эллиптических и абелевых функций, Абель был признанным лидером-основателем наряду с Якоби. Он первый определил эллиптические функции как функции, обратные эллиптическим интегралам, распространил их определения на общий комплексный случай и глубоко исследовал их свойства. Самая важная теорема Абеля об интегралах от алгебраических функций была опубликована лишь посмертно. Лежандр назвал это открытие «нерукотворным памятником» Абелю. Эрмит писал о нем: «Абель оставил математикам столь богатое наследие, что им будет чем заниматься в ближайшие 150 лет».

| Обозначения | Шутки | Отзывы | Об авторах | Ссылки | Связь | Карта сайта |

Copyright © 2004 - 2012 Д-р Юрий Беренгард.  All rights reserved.
Последнее обновление: 20 июля 2012 г.

Rambler's Top100 Союз образовательных сайтов PR-CY.ru