Главная
Обозначения
Шутки
Отзывы
Об авторах
Ссылки
Связь
Карта сайта
Поиск по сайту
   
   План занятий
 
 Учебное пособие (теория)
Задачи на разные темы
Варианты контрольных
www.bymath.net Учебное пособие - Арифметика Учебное пособие - Алгебра Учебное пособие - Геометрия Учебное пособие - Тригонометрия Учебное пособие - Функции и графики Учебное пособие - Основы анализа Учебное пособие - Множества Учебное пособие - Вероятность Учебное пособие - Аналитическая геометрия Выбор темы задач Выбор варианта контрольной
  Очерки об ученых
 


ВИЕТ



Франсуа Виет (1540 — 1603) — французский математик, основоположник символической алгебры. По образованию и основной профессии — юрист.

Родился в Фонтене-ле-Конт французской провинции Пуату — Шарант. Отец Франсуа - прокурор. Учился Виет сначала в местном францисканском монастыре, а затем — в университете Пуатье, где получил степень бакалавра (1560). С 19 лет занимался адвокатской практикой в родном городе. В 1567 году перешёл на государственную службу.

Затем увлекся математикой и в 1570 году подготовил «Математический Канон» — капитальный труд по тригонометрии, который издал в Париже в 1579 году. В 1571 году переехал в Париж, увлечение его математикой и известность Виета среди учёных Европы продолжали расти. Благодаря связям матери и браку своей ученицы с принцем де Роганом, Виет сделал блестящую карьеру и стал советником сначала короля Генриха III, а после его убийства — Генриха IV. По поручению Генриха IV Виет сумел расшифровать переписку испанских агентов во Франции, за что был даже обвинён испанским королём Филиппом II в использовании чёрной магии. Когда в результате придворных интриг Виет был на несколько лет устранён от дел (1584—1588), он полностью посвятил себя математике. Изучил труды классиков (Кардано и др.). Итогом его размышлений стали несколько трудов, в которых Виет предложил новый язык «общей арифметики» — символический язык алгебры. При жизни Виета была издана только часть его трудов. Главное его сочинение: «Введение в аналитическое искусство» (1591), которое он рассматривал как начало всеобъемлющего трактата, но продолжить не успел. Существует гипотеза, что учёный умер насильственной смертью. Сборник трудов Виета был издан посмертно (1646) его голландским другом Ф. ван Схотеном.

Виет чётко представлял себе конечную цель — разработку нового языка, своего рода обобщённой арифметики, которая даст возможность проводить математические исследования с недостижимыми ранее глубиной и общностью. Он писал: «Все математики знали, что под их алгеброй… были скрыты несравненные сокровища, но не умели их найти; задачи, которые они считали наиболее трудными, совершенно легко решаются десятками с помощью нашего искусства, представляющего поэтому самый верный путь для математических изысканий».

Виет всюду делит изложение на две части: общие законы и их конкретно-числовые реализации. То есть он сначала решает задачи в общем виде, и только потом приводит числовые примеры. В общей части он обозначает буквами не только неизвестные, что уже встречалось ранее, но и все прочие параметры, для которых он придумал термин коэффициенты (буквально: содействующие). Виет использовал для этого только заглавные буквы — гласные для неизвестных, согласные для коэффициентов. Он свободно применял разнообразные алгебраические преобразования — например, замену переменных или смену знака выражения при переносе его в другую часть уравнения. Это следует отметить, принимая во внимание тогдашнее подозрительное отношение к отрицательным числам. Из знаков операций Виет использовал три: плюс, минус и черту дроби для деления; умножение обозначал предлогом in. Вместо скобок он, как и другие математики XVI века, надчёркивал сверху выделяемое выражение. Показатели степени у Виета ещё записываются словесно. Новая система позволила просто, ясно и компактно описать общие законы арифметики и алгоритмы. Символика Виета была сразу же оценена учёными разных стран, которые приступили к её совершенствованию. Практически современный вид алгебраический язык получил в XVII веке у Декарта.

К другим научным заслугам Виета следует отнести:
- Знаменитые «формулы Виета» для коэффициентов многочлена как функций его корней.
- Новый тригонометрический метод решения неприводимого кубического уравнения.
   Виет применил его для решения древней задачи трисекции угла, которую свёл к кубическому уравнению.
- Первый пример бесконечного произведения:

- Полное аналитическое изложение теории уравнений первых четырёх степеней.
- Идея применения трансцендентных функций к решению алгебраических уравнений.
- Оригинальный метод приближённого решения алгебраических уравнений.

| Обозначения | Шутки | Отзывы | Об авторах | Ссылки | Связь | Карта сайта |

Copyright © 2004 - 2012 Д-р Юрий Беренгард.  All rights reserved.
Последнее обновление: 29 июня 2012 г.

Rambler's Top100 Союз образовательных сайтов PR-CY.ru